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Numerical Analysis of Eigenvalue Solution of
Disk Resonator
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Abstract—A formulation is proposed to calculate the frequencies
of the eigenmodes for a resonator with a thin conductor disk placed
in the median plane between two infinite parallel conductor plates.
The numerical analysis'is carried out for the E- and EH-modes, and
these eigenvalués are calculated as the function of the ratio of the
disk radius to the distance between the disk and one of the infinite
conductor plates. It is shown that at a ratio greater than a certain
value the exact eigenvalue is smaller than the one predicted by ap-
plying the conventional method for two-dimensional bifurcation of
iecta.pgular waveguide, but the latter becomes closer to the exact one
with increasing ratio. The availability of our exact eigenvalues is
demonstrated in determining experimentally the dielectric constant
of Teflon plate specimen by applying those vaiues. Then the constancy
of the measured dielectric constant is confirmed irrespective of the
modes and the ratios,

I. INTRODUCTION

In the recent experiments by Kobayashi et al. [1], [27 it is shown
that the high-precision measurement of the resonance frequencies
of the modes excited in the resonator containing dielectric plates
between two sufficiently large parallel plates and a thin conductor
disk placed in the median plane (see Fig. 1.) provides a possible
method to determine accurately the dielectric constant. Present
analysis is motivated by the facts that this accuracy depends upon
the correctness of the relation between the measured frequency
and the dielectric constant, as well as that the disk resonator plays
an important role particularly in the planar circuits [37].

We consider the resonant cavity immersed with a dielectric
substance of permittivity ¢ and permeability u, assumed later to
be vacuum value, as shown in Fig. 1. For simplicity the thickness
of the disk is neglected, and the conductivity of the plates and the
disk is assumed to be infinite. The axially symmetric property of
such device is conveniently described in the eylindrical coordinates
whose origin is at the center of the disk and z axis perpendicular
to the plates and the disk.
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Fig. 1. Disk resonator. (a) General view. (b) Side view.

It is well known that as the ratio s = R/d for the disk radius
R and the distance between the disk and one of the parallel plates
become large, the eigenvalue of the E,.,-mode defined by z = kR
with £ = w(eu)/? approaches the mth root of the equation

Jn’ (an) =0 (1)

which is derived simply by requiring the boundary condition for

" an open circuit at disk edge. When s is not too small, the dependence

on s must be taken into account by applying the conventional
method for the two-dimensional bifurcation of a rectangular wave-
guide [47, which we refer to simply as the Marcuvitz method here-
after. Then the eigenvalue .. is approximated by the root of the
equation given by

Io' @nm') =0 (2)
with
2In2 2% nm nm
T = (1 +22 )xm + sl(x— ;0,0) - 2sl<f— ;0,0) 3)
s s s
where the function S, is defined by
81(z; 0,0) = 3 [sint (2/n) — 2/n]. €Y
n=1

Obviously (2) reduces to (1) as s tends to infinity. When we neglect
the second and third terms in (4), the solution of (2) corresponds
to the one of (1) for the disk radius effectively enlarged by 2 In

2d/m [5], [6]. We refer to this approximation as the approximated
Marcuvitz methed.

II. EIGENVALUE FORMULATION

For a loss-free medium all the field components can be expressed
in terms of the 2 components of Hertz vectors II, for electric mode
and II, for magnetic mode satisfying the same Helmholtz equations

A+, =0 and (A +k)O, =0. (5)
The most general solutions satisfying the appropriate boundary
conditions are provided by
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I = == 2 Al (ka-nr) €08 = D cos nf ()
»=1
> -1

Hmin = 4 Z Can(k2(u.—l)7') sin (#—dlzrf sin né ' (7)
n=1

for the interior region, where the upper and lower signs are for
the regions I,(0 <7 <R, 0<2<d) and (0 <r<R,—d <
z < 0), respectively; and

= 2 — 1
Mo = Y BH,® (fy_r) sin £v — Dz

P> ¥ cos né, 8)
k) 2y — 1

Ipex = 3 DH,® (kyyar) cos gl‘z'dﬂ sin nf ®
v=1

for the exterior region II(r > R,—d <z <d). In the above,
the constants 4, B, C, and D are, so far, arbitrary, and n is a non-
negative integer. We have introduced the quantity
k& =k — (kw/2d)2 (10)
for x = 0,1,2,++-. ]
Then all the field components for both the interior and exterior
regions are calculated by properly differentiating i and IIex
[7]. It is easily seen that those field components satisfy all the
necessary boundary conditions required on the conductor surfaces,
namely E/j» = Egn =0 at 2 =0 and =+d for 0 <r < R, and
Epx = Epx =0 at 2 = £d for » > R. Those solutions are the
most general in the extent that the interior solution is finite at
7 = 0, and the exterior solution damps fast enough not to allow the
energy leakage, because the first kind Hankel functions of positive
imaginary arguments are exponentially decreasing at large value
of 7. Both the interior and exterior solutions depend on 8 in common,
but are the different Fourier series with respect to 2. The continuities
of all the field components at the boundary defined by r = R and
—d L z £ d are guaranteed if the components E,, H,, Hs, and H,
are continuous there.

A. The Electric Mode

The case of n = 0 is exceptional, since all the magnetic contri-
butions vanish, namely the terms with the coefficients ¢ and D
do not exist in the expressions for the field components, so that we
have only the E-type mode. Then the components H, and H, vanish
everywhere, and for the reémaining components we require E,in =
Exand He» = Hyex atr = R{or any 2z and 6. Each of these equations
can be regarded as the Fourier series expansion of the odd function
of z in the left-hand side.

Eliminating the expansion coefficients from these equations
we immediately arrive at the following equation for the Eo,-mode
eigenvalues:

det M =0 (11)
where M is the matrix with infinite number of rows and columns,
whose element will be given in what follows.
Here we introduce the notations

2o =a =kR and =z, = [(xws/2)? — 2212 (12)
for « = 1,2,---. According to the range to which the value of
z belongs, namely (21 — 1)#s/2 <z < (2l + 1)ws/2 for I =0,
1, 2,++-, we replace the J-functions of imaginary arguments by
corresponding I-functions to make all the matrix elements real.
Since the asymptotic behaviors of the HW-functions of real argu-
ments are inappropriate for resonant solution, those terms do not
exist, namely By = Bz = ««+ = By_; = 0. Then the arguments
e = gla* 4+ (kws/2)2 ]2 for ¢ = 1,2,+++, 2l — 1 are purely imagin-
ary. Therefore the matrix elements are given in the following al-
ternate forms according to the different ranges for the value z:
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M. = 1 [ 1 Jo'(| Z2e—1) I )
" Tt + | e | 2] | ey | Jol| Zaemy |)

1 Ko'(xzp+zz~1)] (13)

Zopqor1 Ko(Tappo1a)
forp =12,+«« and e = 1,2,+++p; and ,

M _ 1 1 In' (zz(,,-_l))
=
Zoppa1® — Taen)? | Taeny In(Toe-n)

1 K¢ = s
. o (®apia11) (14)
Zaopya1-1 Ko(Tapp011)

for p = 1,2,+»+ and ¢ =p + 1, p + 2,---, where an integer p is
defined by

i if (21 - 1)7rs/2 <z < lus

p= (15)

141,

B. The Hybrid Mode

iflms <2 < (21 + 1)ws/2.

When n is positive integer, the electric and magnetic modes are
hybrid ones. Since they possess nonvanishing ¥, and H, components,
we call them EH-modes. Then, the four requirements H,i» =
Hyex, Hyin = Heex, B = Ex, and H,j» = Hex at r = R for any
z and 6 provide, respectively, the four independent equations. Elim-
inating all the coefficients 4, B, C, and D from those, we finally
obtain the eigenvalue equation analogous to (11) for the electric
mode. Thus, the eigenvalue equation is

det N = 0 (16)

whose matrix elements are given by

N Tops21-1* | Tawny | 2 1 Jd( 7z |)
21,201 =
Topy1® + | Zawny | 2] Zawy | Tnll Bageeny | )
1 K. (2p4211)
an
Zopyo1-1 Kan(Zopior1)
forp=1,2,++-and ¢ = 1, 2,+++,p; and
932,;+2z-12 ﬂ’iz(a—n2 1 In, (xz(o-l))
N2p—1,2|r—1 = P 2
T2p401-1° — L2(e-1)" | T2(o-1) I, (x2(¢r—1))

1 K,/ =
(Z2p211) (8)
Tappon-1 Ko (@opy21-1)

for p=12,++« and ¢ = p + 1, p +2,+--, where an integer p is
the same as defined by (15). Furthermore,

Nopyor = Noppe1 = 1

(19)

and

(20)

N2p,20 = sz—l,zﬂ+l

for p,0 = 1,2,---.

IT1. NUMERICAL ANALYSIS
A. The Eypo-Mode

To solve (11) we approximate the infinite-dimensional deter-
minant with the finite one composed of the finite square section in
the upper-left corner of the original matrix M. Though we expect
the convergence of the series assumed for the solutions, the pro-
priety of this expectation must be ascertained by investigating the
dependence of the solution on the dimensionality of the determi~
nant taken in the actual numerical analysis. For this purpose we
calculate the eigenvalues for several dimensionalities, and compare
the results to infer the inherent calculational errors. The calculated
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Eyemode eigenvalues at various ratios are summarized in Table I.
The dimensionalities of the approximate determinant are indicated
in the title lines of the respective columns for the solutions of (11).
The solutions in the Marcuvitz method (2) and the approximated
Marcuvitz method are listed in the sixth and seventh columns,
respectively. For this mode there exists the cutoff value z = 2.4048
at s = 1.5308. The solutions are compared with the value 3.8317 in
the open circuit approximation (1).

It is observed that the exact solution increases monotonically
with increasing dimensionality, and the convergence of the solution
is better at large values of s. It is remarked that the solution in the
Marcuvitz method is larger than the exact value, but becomes
closer to the latter asymptotically as s increases. However, the
Marcuvitz method predicts a value smaller than the exact one at
small s. This crossover point is s = 4.2, and the Marcuvitz method
provides unexpectedly precise values in this vicinity.

B. The EH pmo-Mode

The eigenvalues for the hybrid modes are calculated by solving
(16), and the results for the EHue-, EHue, and EHge-modes are
summarized in Tables II, III, and 1V, respectively. Since we could
confirm the reliability of our calculational method in the previous
case, here we cite only the results derived from 80-dimensional
determinants for those cases. The solutions in the Marcuvitz method
and the approximated Marcuvitz method are also listed in the third
and fourth columns, respectively.

It is found that there exists a cutoff point also for each hybrid
mode, while it is ignored in the approximated solution from the open-
circuit condition. In Tables II, ITI, and IV the dashes represent the
nonexistence of the eigenvalue because of the cutoff. Comparing

TABLE I
E1GENVALUES OF Ej-MODE

Ratio Exact Solution Xg,,(s) Marcuvitz Aﬁgzgﬁt?iged
s = R/A1 H0x 20 | 30X30 | 40 x40 | 60 xe0 | Method Method

2.0 2.9404 2.9427 2.9439 2,9451 2.9307 3.1391

3.0 3.2777 3.2801 3.2813 3.2825 3.2811 3.3404

5.0 3.5030 3.5047 3.5055 3.5064 3.5073 3.5210
10.0 3.6652 3.6661 3.6666 3.6670 3.6679 3.6698
15.0 3.7197 3.7204 3.7207 3.7210 3.7216 3.7222
20.0 3.7473 3.7478 3.7480 3.7483 3.7487 3.7490
25.0 3.7639 3.7643 3.7645 3.7647 3.7651 3.7652
30.0 3.7751 3.7754 3.7756 3.7761 3.7762
40.0 3.7891 3.7894 3.7895 3.7899 3.7899
50.0 3.7976 3.7978 3.7979% 3.7982 3.7982
X910 = 3.8317 from open circuit condition

TABLE II
EIGENVALUES OF EHuo—MODE

Ratio Exact Solution xilo(s) Marcuvitz Aﬁgigﬁiﬁized
s = R/d 80 X 80 Method Method

0.5 - 0.77238 0.97804

0.8 1.1223 1.0810 1.1867

1.0 1.2404 1.2080 1.2775

2.0 1.4986 1.4935 1.5084

3.0 1.5998 1.5997 1.6051

5.0 1.6891 1.6905 1.6919
10.0 1.7621 1.7632 1.7634
15.0 1.7877 1.7885 1.7886
20.0 1.8008 1.8014 1.8015
25.0 1.8087 1.8092 1.8093
30.0 1.8141 1.8145 1.8145
40.0 1.8211 1.8211
50.0 1.8251 1.8251
Xy19 = 1.8412 from open circuit condition
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TABLE III
EiGENVALUES OF EH310-MODE
Ratio | EXact Solution x210(s) Marcuvitz Approximated
s = R/d Method Marcuvitz
80 X80 Method
1.7 - 2.2952 2.4245
2.0 2.4565 2.4196 2.5021
3.0 2.6439 2.6354 2.6626
5.0 2.7987 2.7999 2.8065
10.0 2.9220 2.9242 2.9251
15.0 2.9649 2.9667 2.9669
20.0 2.9868 2.9882 2.9883
25.0 3.0001 3.0012 3.0012
30.0 3.0090 3.0099 3.0099
40.0 3.0209 3.0209
50.0 3.0275 3.0275
X510 = 3.0542 from open circuit condition
TABLE 1V
E1GENVALUES OF EH30-MODE
Ratio Exact Solution X314 (s) Marcuvitz Aﬁgigﬁ‘i]?itz:ed
s = R/4 80X 80 Method Method
2.0 3.1049 3.4418
2.3 3.4300 3.3275 3.5249
3.0 3.6182 3.5794 3.6625
5.0 3.8449 3.8421 3.8605
10.0 4.0180 4.0211 4.0237
15.0 4.0776 4.0804 4.0811
20.0 4.1079 4,1102 4.1105
25.0 4.1263 4.1281 4,1283
30.0 4.1386 4.1402 4,1403
40.0 4,1553 4,1554
50.0 4.1553 4,1554
X319 = 4.2012 from open circuit condition

the predicted values by the Marcuvitz method with our exact ones
we find that the former method provides an excellent approxima-
tion for the eigenvalues at large s. However, it gives too small
values at small s, as well as fails to predict the correct cutoff point.

The required computation time for the above calculation was
about 100 s per each eigenvalue from 80-dimensional determinant
on a HITAC 8800/8700 computer system at the University of
Tokyo.

1V. MEASUREMENT OF DIELECTRIC CONSTANT

We attempt to measure the dielectric constant of Teflon plates
of four different thicknesses using the lowest modes EH 1y, EH oo,
EHgo, and EHyo. A disk resonator is constructed with a copper
disk of thickness 0.05 mm placed in a form of balanced stripline
between two Teflon substrates of same thickness. Light coupling
to the disk resonator is achieved by E-field probes composed of
the stripline of open circuit, and the transmitted power is detected
as resonance occurs. The results are shown in Fig. 2.

Making use of the following formula:

No i
€& = [ﬁxnmo(s)]

where M = 27¢/w and ¢ is light velocity we determined the dielectric
constant e from each measured value of resonant wavelength X\o
shown in Fig. 2.

The average of all the measurements gave & = 2.043 and the

(21)
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Fig. 2. The measured resonant wavelength for some lowest modes

versus disk diameter in the four cases of teflon thickness (d).

probable error 0.2 percent. We could not find any appreciable dis-
crepancies among experimental values measured at various ratios
between 5 and 30 for the different modes.

V. CONCLUSION

We have carried out the numerical analysis only for a few lowest
E- and EH-modes, which can be easily excited by simple means
[17, [27, [8] and may be useful for the practical usages. However,
we remark that the HE-mode also obeys (16), and its eigenvalue is
obtainable in a similar way. Thus our method of series expansion
can be utilized for any resonance mode of our disk resonator.

The applicabilities of the Marcuvitz method and the approxi-

mated Marcuvitz method are limited to the region of large ratios. In_

particular, the latter contains considerable error at small ratios.
The difficulty of finding some approximation method at small
ratios is- implied by slow convergence to the exact value of eigen~
value according as increasing dimensionality of approximate deter-
minant, namely by the significant admixture of the higher harmonics.

ACKNOWLEDGMENT

The authors wish to thank Y. Suzuki a student of Saitama Univer-
sity for his assistance in this experiment.

REFERENCES

[11 Y. Kobayashi, ‘“The resonators applied on strip lines,”” Rec. Pro-
fessional Groups, Inst. Electron. Commun. Eng. Japan, Paper MW
70-64, pp. 1-10, Jan. 1971.

[2] Y. Kobayashi, T. Oikawa, and 8. Tanaka, ‘“Disk resonator applied
to balanced strip line,” Rec. Inst. Electron. Commun, Eng. Japan,
Paper 521, Apr. 1971.

[8] T. Okoshi and T. Miyoshi, ‘“The planar circuit—An approach to

511

microwave integrated circuitry,” IEEE Trans. Microwave Theory
Tech., vol. MTT-20, pp. 245-252, Apr. 1972.

[4] N. Marcuvitz, Waveguide Handbook. Cambridge, Mass.: Boston
Tech., 1964.

[5] T. Makimoto, M. Yamamoto, and Y. Sugita, ‘‘Resonant frequency
and @Q-factor of triple plate disk resonator,”” Rec. Inst. Electron.
Commun. Eng. Japan, Paper 519, Apr. 1971,

[6]1 T. Miyoshi and T. Okoshi, ‘‘Analysis of microwave planar circuit,”
Trans. Inst. Electron. Commun. Eng. Japan, vol. 55-B, no. 8, pp.
441448, Aug, 1972,

[7]1 J. O. Stratton, Electromagnetic Theory.
1941.

[8] Y. Kobayashi, K. Tanabe, and S. Tanaka, ‘‘Discussions on the
measurement of dielectric constant using disk resonator,”” Rec. Inst.
Electron. Commun. Eng. Japan, Paper 617, Apr. 1973,

New York: McGraw-Hill,

A New Class of Nonreciprocal Components Using Slot Line

L. COURTOIS axo M. pe VECCHIS

Abstract=~The authors present an experimental and theoretical
study of edge modes in a ferrite-loaded slot line. Nonreciprocal
properties are obtained over a broad frequency band. Added micro-
strip lines provide suitable transitions.

A theory based on magnetic boundary conditions shows good
agreement with the experimental results and allows a comparison
with stripline devices described by Hines. In particular, the char-
acteristics of the slot-line isolators are satisfactorily explained by this
theory.

I. INTRODUCTION

It is well known [17, [2] that the dominant mode in a slot line
exhibits regions where the magnetic field is elliptically polarized both
in the substrate and in the air outside the substrate. It is possible
to utilize this property to the design of nonreciprocal microwave
components such as isolators using a resonance effect. However, such
a device does not offer a broad frequency band of operation.

In this short paper we will demonstrate that it is possible to ob-
tain nonreciprocal behavior due to an integral field-displacement
effect over a broad frequency band with a device using a slot line on
a ferromagnetic substrate [3].

11. EXPERIMENTAL STUDY OF THE DEVICE

Our initial experiments with various slot-line geometries led to
the selection of the suitable structure shown in Fig. 1. Using such
a device, we have performed experiments using liquid crystals in
order to demonstrate the field-displacement effect. Liquid crystals
are deposited on the two sides of the device, with the absorbent re-
moved, and they act as a transducer permitting visualization of the
electromagnetic energy [4]. If we designate an input and an output,
it appears that for a given applied dc field, the direct energy is
traveling along one side while the reverse energy is traveling along
the other side. Consequently, we can hypothesize an energy distri-
bution inside the ferrite, as shown in Fig. 1(b). The alumina sub-
strate in Fig. 1(a) is especially helpful in reducing the insertion
losses of the device.
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