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Numerical Analysis of Eigenvalue Solution of

Disk Rescmator

KOSAI TANABE, YOSHIO KOBAYASHI, MEMBER, IEEE,
AND SHUZO TANAKA, SENIOR MEMBER, IEEE

Abstract—A formulation is proposed to calculate the frequencies

of the eigemnodes for a resonator with a thin conductor disk placed

in the median plane betwe-en two infinite parallel conductor plates.

The numerical tialysis”is c~ried out for the E- and Ek?-rnodes, and

these eigenvalues are calculated as the function of the ratio of the
disk radius to the distance between me d!sk and one of the @finite
conductor ‘plates. It is shown that at a ratio gre”ater than a certain

vah!e”the exact eigenvalue is smaller than the one predicted by ap-
plying the conventional method for two-dimensional bifurcation of
rectangular waveguide, but the latter becomes closel to me exact one

with ‘increasing ratio. The availability of our exact eigenvalues is

demonstrated in “determining experimentally the dielectric constant

of Teflon plate specimen by applying those vtiues. Then the constancy

of the measured dielectric const~t is confirmed irrespective of the

modes and the ratios,

I. INTRODUCTION

In the recent experiments by Kobayashl et al. [1], [2] it is shown

that the high-precision measurement of the resonance frequencies

of the modes excited in the resonator containing dielectric plates

between two sufficiently large parallel plates and a thin conductor

disk placed in the median plane (see Fig. 1.) provides a possible

method to determine accurately the dielectric constant. Present

an”alysis is” motivated by the $wts that this accuracy depends upon

the correctness of the relatlon between the measured frequency

and the dielectric constant, as well as that the disk resonator plays

an important role particularly in the planar circuits [3].

We consider the resonant cavity immersed with a dielectric

substance of permittivity e and permeability p, assumed later to

be vacuum value, as shown in Fig. 1. For simplicity the thickness

of the disk is neglected, and the conductivity of the plates and the

disk is assumed to be infinite. The axially symmetric property of

such device is conveniently described in the cylindrical coordinates

whose origin is at the center of the disk and z axis perpendkulsr

to the plates and the disk.
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Fig. 1. Disk resonator. (a) General view. (b) Side view.

It is well known that as the ratio s = R/d for the dkk radius

R and the distance between the disk and one of the parallel plates

become large, the eigenvalue of the Em~J-mode defined by z = kR

with k = ~ (e~) 1/~ approaches the rnth root of the equation

J.’ (znm) = O (1)

which is derived simply by requiring the boundary condition for

an open circuit at disk edge. Whens is not too small, the dependence

on s must be taken into account by applying the conventional

method for the two-dimensional bifurcation of a rectangular wave-

guide [4], which we refer to simply as the Marcuvitz method here-

after. Then the eigenvalue zn~ is approximated by the root of the

equation given by

J.’ (z.m’) = O (2)

with

where the function .& is defined by

.
& (z; 0,0) = ~ [ sin-’ (z/n) – z/n]. (4)

~=~

Obviously (2) reduces to (1) ass tends to infinity. When we neglect

the second and third terms in (4), the solution of (2) corresponds

to the one of (1) for the disk radius effectively enlarged by 2 in

2d/ir [5], [6]. We refer to this approximation as the approximated

Marcuvitz method.

II. EIGENVALUE FORMULATION

For a loss-free medium all the field components can be expressed

in terms of the z components of Hertz veotors He for electric mode

and L for magnetic mode satisfying the same Helmholtz equations

(A +,7c2)II. = O and (A y l#)fI~ = O. (5)

The most general solutions satisfying the appropriate boundary

conditions are provided by
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IIti” = * ~ AJn (IC2(X-.I)T) Cos
(/4 – l)TZ

d
cos nO (6)

P-1

.
rI~i” = + ~ C~Jn (Icz(..-l)r) sin

(P – l)7rzsinn@

d
(7)

w-l

for the interior region, where the upper and lower signs are for

the regions 1.(0 5rSR, O <z Sd) and Il(OSr SR, –dS

z < O), respectively; and

m (2, – l)m ~os no
II.= = ~ E&Iv(l) (ki,-lr) sin

2d
1 (8)

,=~

m

J&= = ~ D,H.(Q (k2,-fr) cos
(2, – l)mz

2d
sin nO (9)

,=,

for the exterior region II (r > R, –d < z < d). In the above,

the constants A., B, C, and D are, so far, arbitrary, and n is a non-

negative integer. We have introduced the quantity

k.’ = k’ – (wr/2d) z (lo)

for K = 0,1,2, . . . .

Then all the field components for both the interior and exterior

regions are calculated by properly differentiating IW and i=

[7]. It is easily seen that those field components satisfy all the

necessary boundary conditions required on the conductor surfaces,

namely I&in = E@ = O at z = O and +d for O ~ r < R, and
,lj’rex H ~oex c O at ~ s +d for ~ > R. Those solutions are the

most general in the extent that the interior solution is finite at

T = O, and the exterior solution damps fast enough not to allow the

energy leakage, because the first kind Hankel functions of positive

imaginary arguments are exponentially decreasing at large value

of r. Both the interior and exterior solutions depend on o in common,

but are the different Fourier series with respect to z. The continuities

of all the field components at the boundary defined by r = R and

– d ~ z ~ d are guaranteed if the components E., H,, He, and H.

are continuous there.

A. The Electric Mode

The case oj n = O is exceptional, since all the magnetic contri-

butions vanish, namely the terms with the coefficients C and D
do not exist in the expressions for the field components, so that we

have only the E-type mode. Then the components H, and H, vanish

everywhere, and for the remaining components we require EZiD =

E.= and H@ = Hoe~at r = R for any z and O. Each of these equations

can be regarded as the Fourier series expansion of the odd function

of z in the leftihand side.

Eliminating the expansion coefficients from these equations

we immediately arrive at the following equation for the EWz-mode

eigenvalues:

det M=O (11)

where M is the matrix with infinite number of rows and columns,

whose element will be given in what follows.

Here we introduce the notations

xo = z = kR and x. = [(wrS/2)% —. ~2]1n (12)

for K = 1,2, . . . . According to the range to which the value of

z belongs, namely (21 — 1) m/2 < z < (2Z + 1) m/2 for 1 = O,

1, 2, . . . . we replace the J-functions of imaginary arguments by

corresponding 1-functions to make all the matrix elements real.

Since the asymptotic behaviors of the IW-functions of real argu-

ments are inappropriate for resonant solution, those terms do not

exist, namely B1 = B3 = . . . = Bzz.1 = O. Then the arguments

~~ = J[zz + (m8/2)2]11z for K = 1,2,. ... 21 — 1 are purely imagin-
ary. Therefore the matrix elements are given in the following al-

ternate forms according to the different ranges for the value x:

M,. =
1

[

1 JO’ (1 Z,(.-l) I )

z2p+2&.1: + I X2(.–1) I 2 I ~z(a-1) I JO(1 Z2(.-1) 1)

1 Ko’ (z2p+2M)
+— 1(13)

~2p+27–1 KO (x9P+zZ-1)

for p = 1,2,... and u = 1,2,. ..,p; and .

Mw =
1

[

1 In’ (w(.-,))

z2p+22_12 — X2(42 X2(.4) In (X2(H))

1 K,’ (XZp+Z[_l)
—- —— 1i14)

~2p+2L-1 Ko (X29+22.-1)

for~=l,2,... and a=p+l, p+2,..., where anintegerpis

defined by

{

1, if (21 — l)m/2 < z < lm
p= (15)

1+1, if lms < x < (21 + 1) m/2.

B. The Hybrid Mode

When n is positive integer, the electric and magnetic modes are

hybrid ones. Since they possess nonvanishing E. and H, components,

we call them EH-modes. Then, the four requirements H,in =

H,ex, Hoi’ = HF, E.in = EF, and HP = H,= at r = R for any

z and o provide, respectively, the four independent equations. Elim-

inating all the coefficients A, B, C, and D from thoee, we finally

obtain the eigenvalue equation analogous to (11) for the electric

mode. Thus, the eigenvalue equation is

det N = O (16)

whose matrix elements are given by

Z2P+22.J I X2(A) / 2

[

1 .ln’ (/ X2(.-,) [ )
N2p._1 ,2.-1 =

%+22-12 + I $2(.-1) I 2 I ~2(.Y-1) I Jn (1 $2(.-1) I )

Km’ (9ap+2t.-1)
+J-

x2p+21–1 K~ (mp+w.l) 1(17)

for p = 1, 2, ““”andu =l,2,...,p; and

N2g4 ,2c4 =
X29+21-.12 X2(.4)2

[

1 In~ (cc*(._I))

Z%+22-12 — $2(.J z2(._l) In (z2(._l) )

1 Kn’(z2,+2t.-1)
——

X2P+2H K~ (x20+2z_1 ) 1(18)

forp= 1,2,... and r =p+l, p+2,..., where an integerp is
the same as defined by (15). Furthermore,

N2p–1,2c = 1V2P,ZV–1= n (19)

and

N2,,2. = NW,W (20]

for p,u = 1,2, . . . .

III. NUMERICAL ANALYSIS

A. The EOmO-Mode

To solve (11) we approximate the infinite-dimensional deter-

minant with the finite one composed of the finite square section in

the upper-left corner of the original matrix M. Though we expect

the convergence of the series assumed for the solutions, the pro-

priety of this expectation must be ascertained by investigating the

dependence of the solution on the dimensionality of the determi-

nant taken in the actual numerical analysis. For this purpose we

calculate the eigenvalues for several dimensionalities, and compare

the results to infer the inherent calculational errors. The calculated
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TABLE III
EIGENVALUES OF EHMO-MODE

l&-modeeigen values at various ratios aresurnmarized in Table I.

The dirnensionalities of the approximate determinant are indicated

inthetitle lines of the respective columns forthe solutions of (11).

Thesolutions inthe Marcuvitz method (2) and the approximated

Marcuvitz method are listed in the sixth and seventh columns,

respectively. For this mode there exists the cutoff valuez = 2.4048

at s = 1.5308. The solutions are compared with the value 3.8317 in

theopen circuit approxima-tion (l).

It is observed that the exact solution increases monotonically

with increasing dmensionality, and the convergence of the solution

isbetter at large values of s. It is remarked that the solution in the

Marcuvitz method is larger than the exact value, but becomes

closer to the latter asymptotically as s increases. However, the

Marcuvitz method predicts a value smaller than the exact one at

small s. This crossover point is s = 4.2, and the Marcuvitz method

provides unexpectedly precise values in this vicinity.

B. The EH..,-Mode

The eigenvalues for the hybrid modes are calculated by solving

(16), and the results for the EHw, EHz1o-, and EH,io-modes are

summarized in Tables II, III, and IV, respectively. Since we could

confirm the reliability y of our calculational method in the previous

case, here we cite only the results derived from 80-dimensional

. determinants for those cases. The solutions in the Marcuvitz method

and the approximated Marcuvitz method are also listed in the third

and fourth columns, respectively.

It is found that there exists a cutoff point also for each hybrid

mode, while it is ignored in the approximated solution from the open-

circuit condition. In Tables II, III, and IV the dashes represent the

nonexistence of the eigenvalue because of the cutoff. Comparing

Ratio
S = R/d

1.7

2.0

3.0

5.0

10.0

15.0

20.0

25.0

30.0

40.0

50.0

‘Xact ‘O1utlOn ’21O (s)

Soxso

Approximated
Marcuvitz

Method

Marcuvit z
Method

2.4245

2.5021

2.6626

2.8065

2.9251

2.9669

2.9883

3.0012

3.0099

3.0209

3.0275

2.2952

2.4196

2.6354

2.7999

2.9242

2.9667

2.9882

3.0012

3.0099

3.0209

3.0275

2.4565

2.6439

2.7987

2.9220

2.9649

2.9868

3.0001

3.0090

’21O = 3.0542 from open circuit condition

TABLE IV
EIGENVALUES OF EH31O-MODE

~pproximated
lMarcuvitz

Method

Ratio

S = R/d
I

3.1049

3.3275

3.4418

3.5249

3.6625

3.8605

4.0237

4.0811

4.1105

4.1283

4.1403

4.1554

4.1554

2.0

2.3

3.0

5.0

10.0

15.0

20.0

25.0

30.0

40.0

50.0

3.4300

3.6182

3.8449

4.0180

3.5794

3.8421

4.0211TABLE I
EIGENVALUES OF EO,O-MODE

4.0776 I4.0804

4.1079 4.1102~pproxlmat<
Marcuvitz

Method

3.1391

3.3404

3.5210

3.6698

3.7222

3.7490

3.7652

3.7762

3.7899
3.7982

Ratio
= R/d

2.0

3.0

5.0

10.0

15.0

20.0

25.0

30.0

40.0

50.0

Exact Solutlon x .1”(s) Marmwit z
Method

2.9307

3.2811

3.5073

3.6679

3.7216

3.7487

3.7651

3.7761

3.7899
3.7982

D

2.9404

3.2777

3.5030

3.6652

3.7197

3.7473

3.7639

3.7751

3.78S1

3.7976

30X30

2.9427

3.2801

3.5047

3.6661

3.7204

3.7478

3.7643
3.7754

3.7894
3.7978

.-.
40 X40

2.9439

3.2813

3.5055

3.6666

3.7207

3.7480

3.7645

3.7756

3.7895

3.7979

60 X60

2.9451

3.2825

3.5064

3.6670

3.7210

3.7483

3.7647

4.1263

4.1386

4.1281

4.1402

4.1553

4.1553
—

’31O = 4.2012 from open circuit condition

thepredkted values by the Marcuvkz method with our exact ones

we find that the former method provides an excellent approximw

tion for the eigenvaluee at large s. However, it gives too small

values at smalls, as well as fails to predict the correct cutoff point.

The required computation time for the above calculation was

about 100s per each eigenvalue from 80-dimensional determinant

on a HITAC 8800/8700 computer system at the University of

Tokyo.

’010 = 3.8317 from open clrcult condit~on

TABLE II
EIGENVALUES OF EHI16-MODE

[arcuvitz
Method

Exact Solution XI IO(S)

80X80

~pproximated

Marcuvit z
Method

Ratio
S = R/d

IV. MEASUREMENT OF DIELECTRIC CONSTANT

We attempt to measure the dielectric constant of Teflon plates

of four cliff erent thickness es using the lowest modes EHI1o, EHzN,
EHolo, and EH31o A disk resonator is constructed with a copper

disk of thickness 0.05 mm placed in a form of balanced stripline

between two Teflon substrates of same thickness. Light coupling

to the disk resonator is achieved by E-field probes composed of

the stripline of open circuit, and the transmitted power is detected

as resonance occurs. The results are shown in Fig. 2.

Making use of the following formula:

0.77238

1.0810

1.2080

1.4935

1.5997

1.6905

1.7632

1.7S85

1.8014

1.8092

1.8145

1.8211

1.8251

0.97804

1.1S67

1.2775

1.5084

1.6051

1.6919

1.7634

1.7886

1.8015
1.8093

0.5

0.s

1.0

2.0

3.0

5.0

10.0

15.0

20.0

25.0

30.0

40.0

50.0

’11O =

1.1223

1.2404

1.4986

1.5998

1.6S91

1.7621

1.7877

1. S008

1.80S7

1.8141 ‘r=[~xnm”(s)l(21)

1.8145

1.s211

1.8251

where ho = 2rc/c4 and c is light velocity we determined the dielectric

constant e, from each measured value of resonant wavelength XO

shown in Fig. 2.

The average of all the measurements gave ●, = 2.043 and the.8412 from open c~rcuit condition
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Resonant wavelength ( k. )-mm

2. The measured resonant wavelength for some lowest modes
versus disk diameter in the four cases of teflon thickness (d).

probable error 0.2 percent. We could not find any appreciable dB-

crepancies among experimental values measured at varioue ratios

between 5 and 30 for the different modes.

V. CONCLUSION

We have carried out the numerical analysis only for a few lowest

E- and ZXZ-modes, which can be easily excited by simple means

[1], [2], [8] and may be useful for the practical usages. However,

we remark that the HE-mode also obeys (16), and its eigenvalue is

obtainable in a similar way. Thus our method of series expansion

can be utilized for any resonance mode of our disk resonator.

The applicabilities of the Marcuvitz method and the approxi-

mated Marouvitz method are limited to the region of large ratios. In.

particular, the latter containe considerable error at small ratios.

The difficulty of finding some approximation method at small

ratios is implied by slow convergence to the exact value of eigen-

value according as increasing dimensionality of approximate deter-

minant, namely by the significant admixture of the higher harmonics.
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A New Class of Nonreciprocal Components Using Slot Line

L. COURTOIS AND M. DE VECCHIS

Absfract—The authors present an experimental and theoretical
study of edge modes in a ferrite-loaded slot line. Nonreciprocal

properties are obtained over a broad frequency band. Added micro-

strip lines provide suitable transitions.

A theory based on magnetic boundary conditions shows good

agreement with the experimental results and allows a comparison

with stripline devices described by Hines. In particular, the char-

acteristics of the slot-line isolators are satisfactorily explained by this

theory.

I. INTRODUCTION

It is well known [1], [2] that the dominant mode in a slot line

exhibits regions where the magnetic field is elliptically polarized both

in the substrate and in the air outeide the substrate. It is possible

to utilize thk property to the design of nonreciprocal microwave

components such as isolators using a resonance effect. However, such

a device does not offer a broad frequency band of operation.

In this short paper we will demonstrate that it is possible to ob-

tain nonreciprocal behavior due to an integral field-dkplacement

effect over a broad frequency band with a device using a slot line on

a ferromagnetic substrate [3].

II. EXPERIMENTAL STUDY OF THE DEVICE

Our initial experiments with various slot-line geometries led to

the selection of the suitable structure shown in Fig. 1. Using such

a device, we have performed experirnente using liquid crystals in

order to demonstrate the field-displacement effect. Liquid crystals

are deposited on the two sides of the device, with the absorbent re-

moved, and they act as a transducer permitting visualization of the

electromagnetic energy [4]. If we designate an input and an output,

it appears that for a given applied de field, the dh-ect energy is

traveling along one side while the reverse energy is traveling along

the other side. Consequently, we can hypothesize an energy distri-

bution inside the ferrite, as shown in Fig. 1 (b). The alumina sub-

strate in Fig. 1 (a) is especially helpful in reducing the insertion

losses of the device.
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